Квантовая теория поля в двух словах

Появление и развитие квантовой теории поля

С самого возникновения квантовой теории важной задачей было описание взаимодействия частиц между собой и с излучением. Многие ученые обращались к этой проблеме, еще не зная о том, что с годами этот вопрос станет одним из самых больших вызовов физики. Так родились квантовая электродинамика и более общая квантовая теория поля. Паули участвовал в решении этой проблемы, которая стала главной его задачей в последние годы жизни. Квантовая теория поля в двух словах – цель данной статьи, давайте вместе разобраться в этом вопросе.

Возмущенный атом переходит в стабильное состояние, испуская электромагнитное излучение, то есть фотоны. Также атом при переходе в возбужденное состояние поглощает фотоны. Но где находится фотон до перехода? Что случается с фотоном после того, как его поглотил атом? Для обеих ситуаций существует один ответ: фотон создается или уничтожается в самом процессе перехода из одного атомного состояния в другое. То же происходит во время бета-распада. Ядро превращается в другое ядро, и при этом излучаются электроны и нейтрино. Где до этого находились эти частицы? Нигде, их до этого не существовало, они были созданы в процессе радиоактивного распада.

Релятивистская теория с ее принципом эквивалентности массы и энергии позволяет понять — хотя бы качественно — эти процессы, в которых создаются и/или уничтожаются частицы. Понятие фотона как частицы (кванта света) сначала позволяло изучать процессы столкновения частиц, включая электромагнитное излучение, используя общие известные свойства — сохранение энергии, импульс и угловой момент. Проблема была поставлена ясно, и для ее анализа нужно было найти ответ на следующий вопрос: откуда появляются фотоны? Какой механизм отвечает за то, что возбужденный атом испускает фотон?

См. также:  Открытие спина электрона

145В 1917 году Эйнштейн осуществил первую серьезную попытку выстроить квантовую теорию, которая позволила бы описать как атомные состояния, так и само электромагнитное излучение. Тогда он ввел свои знаменитые коэффициенты излучения (индуцированные и спонтанные переходы) и поглощения. Эйнштейн смог найти простое отношение между ними, но заявил:

«Определение коэффициентов требует механики и электродинамики, согласующихся с квантовой теорией. […] Свойства элементарных процессов делают практически неизбежной формулировку настоящей квантовой теории излучения».

С появлением квантовой механики начинается систематический поиск последовательной теории, которая позволила бы рассчитать коэффициенты Эйнштейна и объяснила бы взаимодействие частиц между собой и с излучением.

ПЕРВОПРОХОДЦЫ КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ

Первое упоминание о матричной электродинамике появляется в знаменитой работе Борна, Йордана и Гейзенберга. Именно эта часть исследования в значительной степени принадлежала Паскуалю Йордану — первому физику, который занимался вопросом квантования электромагнитного поля и ввел термин вторичного квантования (важнейший в последующем развитии теории). Йордан и его коллеги смогли воспроизвести результат Эйнштейна, касающийся отношения между коэффициентами поглощения и излучения, исходя из основополагающих принципов новой квантовой теории, но у них не получилось рассчитать сами коэффициенты. Для них было принципиальным описание механизма рождения и уничтожения фотонов, а для этого необходимо было располагать квантовой теорией, которая учитывала бы взаимодействие излучения и материи. По этому пути пошел Поль Дирак, который считается создателем квантовой электродинамики. В своих работах 1926-1927 года он развил формализм, необходимый для описания взаимодействия излучения (электромагнитного поля) и вещества в рамках квантовой теории. Работы Дирака имели огромное влияние и ввели методы и главные понятия, необходимые для описания процессов рождения и/или уничтожения фотонов.дирак

Дирак не только смог рассчитать коэффициенты Эйнштейна, но и применил свою теорию к общим проблемам рассеяния, в котором участвовало больше одного фотона. Для этого он вынужден был расширить рамки начального исследования, введя в него показатели высшего порядка (так называемые радиационные поправки). Работы Дирака заложили основы того, что спустя несколько лет получит название квантовой электродинамики, и задали направление изучения взаимодействия излучения и вещества. Несмотря на успех, теория Дирака столкнулась с двумя трудностями, которые привлекли внимание других физиков. В первую очередь, она противоречила теории относительности, и это было серьезным недостатком для теории, которая пыталась объяснить квантовое поведение электромагнитного поля. Дирак полностью осознавал этот недостаток. Вторая проблема была связана с некоторыми абсурдными бесконечными результатами, возникавшими при рассмотрении показателей высшего порядка.

См. также:  Громоотвод Франклина

Важные шаги в изучении взаимодействия излучения и вещества были предприняты Йорданом. В серии работ, написанных совместно с другими коллегами, он развил общую методологию квантования классических полей, используя термин вторичного квантования в отношении всех частиц и полей, а не только в случае электромагнитного поля, которым ограничился Дирак. Представления Йордана и Дирака были очень разными. Дирак рассматривал элементарные частицы как основные частицы квантовой теории, Йордан же отводил главную роль понятию поля. Частицы просто создавались в процессе квантования соответствующего классического поля.

В этом смысле Йордан и коллеги развили язык, отличный от языка Дирака, и применили его ко всем типам частиц — как к фотонам с целым спином, так и к электронам и протонам с полуцелым спином. Йордан первым из физиков доказал, что процесс вторичного квантования может внести поправки в статистику Дирака — Ферми (которой удовлетворяли только частицы с полуцелым спином). Формализм Йордана стал исходной точкой квантовой теории поля.

В конце как обычно видео про квантовую теорию поля)

Добавить комментарий

Ваш адрес email не будет опубликован.